
Abstract. The possibility that the Kohn-Sham (KS)
solution for a noninteracting auxiliary electron system is
not the conventional one-determinantal pure state but a
few-determinantal ensemble has been investigated. The
KS solutions (the exchange-correlation potential vxc and
the orbitals) have not been approximated by local-
density or density-gradient approximations but have
been constructed from an accurate ab initio electron
density. The lowest singlet states of the CH2 and C2

molecules have been selected for this investigation since
for these cases the ground-state wave function W is
nondegenerate but has an essentially multideterminantal
character (electron correlation is strong). For C2 the
dependence of the type of KS solution on the bond
distance R(C±C) has been studied at the QZ level. For
the shortest distance considered, R(C±C) � 1:8 a.u.,
a pure-state KS solution has been obtained. For the
equilibrium distance Re�C±C� � 2:348 a.u. and at larger
distances ensemble solutions have been obtained with
widely varying weights of the individual determinants,
depending on the bond distance. For CH2 the depen-
dence of the type of KS solution on the basis has been
studied: calculation in the triple zeta (TZ) basis for the
KS orbitals yields an ensemble solution, while the pure-
state KS solution has been obtained in the quadruple
zeta (QZ) basis. The form of the KS orbitals has been
compared with that of the natural orbitals (NOs). It has
been shown for the model example of the stretched H2

molecule as well as for CH2 and C2; that the KS orbitals
of the pure state may be rather di�erent from the
corresponding NOs; while the occupied KS orbitals of
the ensemble solution can be considered as plausible
approximations to the corresponding NOs.

Key words: Density functional theory ± Fractional
occupation numbers ± Ensemble-v-representability ±
Electron correlation ± Kohn-Sham

1 Introduction

For the formulation of the Hohenberg-Kohn density
functional theory (DFT) the m-representability of densi-
ties q�r� is an important issue: given a proper density q�r�
(nonnegative, integrating toN electrons), does there exist
a local potential m�r� such that q�r� corresponds to: (a) a
ground state W of the system of interacting electrons
moving in the potential m(r) [Pure-state v-representable
(PS-V);Wmay be degenerate or not]; or (b) an ensemble of
ground-state wave functions in case of degenerate ground
state [ensemble v-representable (E-V)]? The ensemble
representable density is obtained from a density matrix M̂
representing a mixture (ensemble) of ground states,

M̂ �
X

dijW0;iihW0;ij di � d�i � 0;
X

di � 1

q�r� � trM̂ q̂�r� �
X

diq0;i�r�
�1�

The diagonal density obtained is a convex combination
of pure ground-state densities. Such densities have
acquired special signi®cance in the theory since it was
proven by Levy [1] and by Lieb [2] that a convex
combination of ground-state densities is not, in general,
pure-state v-representable. The implication is that there
is a large set of perfectly ``normal looking'' densities that
do not correspond to a ground-state wave function.

We will not primarily consider the question of re-
presentability of densities by ground states of interacting
electron systems, but we will be concerned with a similar
problem that arises in the context of the Kohn-Sham
(KS) approach of DFT. Kohn and Sham introduce a
system of noninteracting electrons moving in a local
potential ms(r), which has the same density q(r) as the
interacting system considered [3]. We will restrict our-
selves here to the case that the interacting system has a
nondegenerate ground state. Then the basic Ansatz of
the KS theory is the ms-representability of the given q(r)
[1,2,4-6] which can be formulated as follows. Suppose
that, for an interacting system, q(r) follows from a
nondegenerate ground-state wave function W, then there
exists a local potential ms(r) such that q(r) also corre-Correspondence to: E.J. Baerends
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sponds to a one-determinantal ground-state wave func-
tion Ws of the noninteracting system. The original KS
assumption may be extended, in view of the importance
of ensemble-representable densities, to include the case
that ms(r) leads to a degenerate ground state of the
noninteracting system and q(r) corresponds to an en-
semble of ground states Ws;i: We denote these possibili-
ties as pure-state ms-representable (PS-Vs� or ensemble
ms-representable (E-Vs�.

One may wonder if a density corresponding to a
nondegenerate ground state of the interacting system
will ever fail to be PS-Vs representable. It is the purpose
of this paper to identify such a situation and to em-
phasize that the E-Vs representability is not just an issue
of mathematics but that there is a clear connection with
the physical phenomenon of electron correlation in the
interacting system. The ms representability is studied for
the case of the nondegenerate lowest singlet states of the
molecules CH2 �1A1 inC2v� and C2�1

P�
g inD1h�, the KS

solution being obtained from the corresponding corre-
lated CI wave function W with the iterative procedure of
[7] (cf. also [8]). The molecules CH2 and C2 have been
chosen as examples of systems with an essentially mul-
tideterminantal character of W. For the lowest singlet
state of CH2 the importance of inclusion in the CI ex-
pansion of a con®guration with r! p excitation has
been established, and for many years calculations of this
molecule served as a benchmark for ab initio quantum
chemistry [9±11]. For the ground state of C2 the CI ex-
pansion exhibits for the equilibrium bond distance
Re(C±C) an exceptionally large contribution of excited
con®gurations, compared to other dimers A2 of the
second period [12]. The main con®guration D0 changes
with changing distance R(C±C): for shorter R(C±C)
(including Re) D0 represents a valence state with two
2p-based p-bonds and no r-bond [con®guration
. . . �2rg�2�2ru�2�3rg�0�1pu�4], while for longer R(C±C)D0

represents a valence state with one p- and one 2p-based r-
bond [con®guration �2rg�2�2ru�2�3rg�2�1pu�2]. Another
important con®guration, in particular at short distances,
is �2rg�2�2ru�0�3rg�2 �1pu�4, with nominally two p bonds
and two r bonds, one 2s-based ��2rg�2� and one 2p-based
��3rg�2�.

There is an obvious connection between the use of
fractional occupation numbers (FON) in (approximate)
DFT calculations and the question of E-Vs represent-
ability of a ground state density, since a density matrix
representing an ensemble of pure determinantal states
leads to a diagonal density that can be written as a sum
of orbital densities with fractional occupations [13].
Even prior to the discussions of m- and ms-represent-
ability, and the recognition of the importance of
ensemble-representable densities, FONs had been in-
troduced by Slater et al. [14] in the Xa method in an
intuitive manner. Dunlap [15, 16] observed in Xa calcu-
lations on C2 and Si2 that an improved 1

P�
g (not the

ground state in Xa) potential energy curve was obtained
when allowing for fractional occupation of the pu and
3rg orbitals. Recently Wang and Schwarz [17] have
given a clear exposition of the FON method, demon-
strating for a series of modern functionals that it gives an
improved potential energy curve for the transition from

the ring �D3h� to open �C2v� structure of O3, and simi-
larly for SO2. These authors have implemented an
automatic FON optimization, requiring practically no
additional computational e�ort, into the Amsterdam
density function (ADF) code [18, 19]. The FONs receive
a rigorous basis if densities have to be represented by an
ensemble of pure (determinantal) states of the nonin-
teracting KS system. In this paper we wish to explore
and establish the connection between (strong) electron
correlation and the need for E-Vs representation of the
density. For this purpose we avoid the use of approxi-
mate functionals, but generate the noninteracting den-
sity and KS potential directly from an accurate
correlated ab initio electron density of the interacting
system.

This paper is organized as follows. In Sect. 2 alter-
native types of KS solutions are considered and the sit-
uation with respect to the proof of the representability of
q for both interacting and noninteracting systems is
discussed. In Sect. 3 the e�ect of electron correlation on
the type of the KS solution and on the form of the KS
orbitals is discussed. For an interacting system q is
conventionally represented with the natural orbitals
(NOs)fvig [20], while for a noninteracting system it is
represented with the KS orbitals fwig. Naturally, the
question (related to the representability problem) arises:
what are the di�erences and similarities between the
NOs and KS orbitals? The example of the (stretched)
H2 molecule is considered, for which the NOs and KS
orbitals are shown to be distinctly di�erent from each
other.

An iterative procedure for the construction of the
KS orbitals and the KS potential from the ab initio CI
wave function is outlined. The situation is considered
where this procedure combined with the constraint of
integer occupations of the KS orbitals, leads to a so-
lution with unoccupied orbitals having an energy lower
than that of the highest occupied orbitals (``holes'' be-
low the Fermi level). A procedure denoted ``evapora-
tion of the hole below the Fermi level'' [15, 17] is
employed in this case, which leads to an ensemble KS
solution with accidental degeneracy of the correspond-
ing Slater determinants.

In Sect. 4 the KS solution obtained from the CI wave
function of the CH2 molecule is presented. In this case
the electron correlation is just not strong enough to
enforce E-Vs representability. The dependence of the KS
solution on the size of the basis set and the CI expansion
used is investigated. As will be shown in Sect. 4, in
borderline cases where there possibly is a weak contri-
bution of a second KS determinant, the type of solution
may actually depend on the basis set size. In CH2 it
becomes possible only with a fairly large basis to obtain
a one-determinantal (pure-state) KS solution, while for a
smaller basis the ensemble solution is obtained.

In Sect. 5 the dependence of the type of KS solution on
the bond distance R(C±C) is studied for the C2 molecule.
In this case the possibility will be demonstrated, for a
density corresponding to a nondegenerate pure state of
the interacting system, of an essentially accurate ensem-
ble KS solution with accidental (not symmetry dictated)
degeneracy of the KS determinants. Upon increase of
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R(C±C), the KS solution evolves from a pure state to an
ensemble with a ``weak'' involvement of an accidentally
degenerate state, to an ensemble with a ``strong'' degen-
eracy, and then to another ensemble with a ``weak''
accidental degeneracy. For both CH2 and C2 one- and
two-dimensional plots of the constructed exchange-co-
rrelation KS potentials mxc are presented and interpreted.
As will be shown, for the pure-state KS solution the or-
bitals may be rather di�erent from the corresponding
NOs, while the ensemble solution brings KS orbitals
closer to NOs. In Sect. 6 the conclusions are drawn.

2 Representation of the electron density in the KS theory

As was noted in Sect. 1 the representability of the exact
density q of an interacting electron system by means of a
noninteracting system is the central problem of the KS
theory. Let q be the density of a nondegenerate ground
state (pure state, PS) W of the interacting closed-shell
system with the external potential mext so that it is
denoted as a PS-V representable density. Then the
following three possibilities may, in principle, occur for
its representability by a noninteracting system.

2.1 PS-Vs representability

q is also the density of a pure ground state Ws of a
noninteracting KS system with the potential ms, so that it
is denoted as PS-Vs representable. The KS potential ms is
related to the external potential mext as follows:

ms�r� � mext�r� � mH�r� � mxc�r�; �2�
where mH is the Hartree potential of the electrostatic
electron repulsion and mxc is the exchange-correlation
potential. In general, Ws is a few-determinantal function
built from K degenerate one-determinantal ground
states Dsj

Ws �
XK

j�1
cjDsj �3�

ĤsDsj � EsDsj �4�

Ĥs �
XN

i�1
ÿ 1
2
r2

i � ms�ri�
� �

�5�

In the simplest case the KS ground state is nonde-
generate and Ws is just one determinant Ds. In this case q
is expressed in the form

q�r� � 2
XN=2
i�1
jwi�r�j2 �6�

with integer occupations �ni � 2� of the N/2 lowest-
energy KS orbitals. Consider the case that the interacting
W for a closed-shell N electron system is nondegenerate
and its con®guration interaction (CI) expansion is
dominated by a single Slater determinant D0 built from

N/2 lowest Hartree-Fock (HF) orbitals ui. Then, Ws is
also expected to be a determinant Ds built from N=2
lowest KS orbitals /i. This is con®rmed by the essentially
accurate KS solutions obtained from ab initio CI wave
functions for closed shell atoms [21, 22] and molecules
[23±27] with a nondegenerate ground state. The KS
solutions Ws obtained until now are all single determi-
nants Ds. Below in the text we shall consider only the one-
determinantal pure KS state, so that (unless otherwise
stated explicitly) the abbreviation PS for KS systems will
refer to just these one-determinantal states.

2.2 E-Vs representability

q corresponds to an N-particle density matrix M̂s of the
KS system, which represents an ensemble of L wave
functions Wsj of the type (3)

M̂s �
XL

j�1
djjWsjihWsjj �7�

Obviously, the set of E-Vs representable q contains all
the PS-Vs representable q, since (3) is a particular case of
(7) with L � 1. In the simplest case Ws in (7) are just
ground-state determinants Dsj of (4)

M̂s �
XL

j�1
djjDsjihDsjj �8�

Since the Dsj are degenerate ground-state wave
functions of the noninteracting system, with a nonin-
teracting energy Es that is equal to the sum of the orbital
energies, the Dsj have the same KS orbitals wi with en-
ergies below the Fermi level, ei < eF and they di�er from
each other in, at least, one highest occupied orbital wHO

i ,
the latter orbitals being all degenerate at eF; eHOi � eF.
The orbitals wHO

i may have a symmetry-related degen-
eracy, i.e., belong to di�erent subspecies of a certain
irreducible representation of the symmetry group of the
molecule. They may also belong to di�erent irreducible
representations, i.e., exhibit accidental degeneracy. In
that case two determinantal wave functions Dsj and Dsk
may still be of the same symmetry (totally symmetric if
for instance each of them has a highest occupied orbital
that belongs to a one-dimensional irreducible represen-
tation and is doubly occupied). In that case two states of
the noninteracting system of the same symmetry exhibit
an accidental degeneracy, a situation that rarely (if ever)
occurs in the interacting case. It may occur more readily
in noninteracting systems since for two determinants
that di�er in two spin orbitals there will not be an in-
teraction matrix element. Such accidental degeneracy
allows for E-Vs representability of the ground-state
density which we will see is intimately related to non-
dynamical correlation e�ects. Suppose the ground state
W of the interacting system is nondegenerate (pure
state), but has an essentially multideterminantal char-
acter, i.e., apart from the main con®guration D0, some
excited con®gurations Di bring relatively large contri-
butions to the CI expansion of W
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W � c0D0 �
X

i

ciDi � . . . �9�

The natural question arises, whether in this case just
one KS determinant Ds, with the orbitals representing
independent electrons moving in a local potential, is
capable of representing the interacting q including the
contributions from both the determinants D0 as well as
Di, or whether the interacting q can only be repre-
sented by an ensemble of degenerate KS determinants
Dsi.

If q is represented by an ensemble for the noninter-
acting system (E-Vs representability), it is expressed via
the KS orbitals as follows:

q�r� � 2
X

i:ei<eF

jwi�r�j2 �
X

i:ei�eF

nHOi jwHO
i �r�j2 �10�

with fractional occupations nHOi of the accidentally
degenerate orbitals wHO

i . The occupations nHOi are
combinations of the weights dj of Dsj in the ensemble
(8) and the integer occupations hHOji of the orbitals wHO

i
in the densities qsj, which correspond to Dsj

qsj�r� � hDsjjq̂�r�jDsji �
X

i

hjijwi�r�j2

nHOi �
XL

j�1
djh

HO
ji �11�

The kinetic energy Ts in this case has the form

Ts � 2
X

i:ei<eF

Z
w�i �r� ÿ

1

2
r2

� �
wi�r�dr

�
X

i:ei<eF

nHOi

Z
wHO�

i �r� ÿ 1
2
r2

� �
wHO

i �r�dr
�12�

EKS, which is the expectation value of the full interacting
hamiltonian for the KS wave function (or ensemble)
taken as a trial wave function for the interacting system,
to be distinguished from the noninteracting energy
Es �

P
i niei, has the form

EKS � TrfM̂sĤg �
XL

j�1
djhDsjjĤ jDsji �13�

so that the exchange energy Ex can be de®ned as a
weighted sum of the exchange energies of the individual
determinants

Ex �
XL

j�1
djExc�qj� 6� Exc

X
djqj

h i
�14�

where

Ex�qj� � ÿ
1

4

X
i

X
k

Z
dr1dr2

hjihjkw
�
i �r1�wk�r1�w�k�r2�wi�r2�
jr1 ÿ r2j

�15�
Below we shall denote as E-Vs representable the
densities that cannot be represented with a single KS
determinant, but that can be represented with an
ensemble (8)

2.3 Break-down of the KS approach

q cannot be represented with either a pure ground state
(including states that are a linear combination of
ground-state determinants) or an ensemble, as sect. 2.1
and 2.2. In this case of non-ms representability, it is still
possible that q can be expressed in the form

q�r� �
X

i

nijwi�r�j2 �16�

with partial occupation �nj < 1� of some orbitals wi
with energies ei below the Fermi level (holes below
the Fermi level) [28]. For a noninteracting system, the
ground state must obey the Aufbau principle, i.e., the
ground state of the KS system cannot contain holes, thus
(16) corresponds to some excitation of the KS system.
This case could manifest a breakdown of the KS Ansatz
of noninteracting ms-representability of all interacting
ground-state densities.

Unfortunately, although several mathematical studies
on the m- and ms-representability problems have appeared
[1, 2, 4±6], the ms-representability has not been proven
yet for an arbitrary m-representable density. The original
[29] HK functional FHK has been extended to the func-
tional FL�q� [2] which searches the in®mum of TrfM̂
�T̂ � Ŵ �g for all density matrices M̂ which yield the
density q

FL�q� � inf
M̂!q

TrfM̂�T̂ � Ŵ �g

M̂ �
X

dijWiihWij di � d�i � 0;
X

di � 1
�17�

The advantage of FL�q� is that it is a convex functional
de®ned on the convex set SN of all nonnegative densities
that integrate to N (not just the set of ground-state den-
sities AN on which FHK is only de®ned). FL�q� is di�er-
entiable, with m as a tangent functional, at all PS-V and E-
V densities (and nowhere else). If we turn to noninter-
acting systems, for which the two-body interaction is
zero, Ŵ � 0, the functional FL�q� reduces to just the ki-
netic energy functional for noninteracting electrons,
TL�q�. Again, the di�erentiability of TL�q� will be assured
for PS-Vs and E-Vs densities, with ms as the tangent
functional. However, the KS method would only be put
on ®rm ground if one could also prove that every inter-
acting density, i.e., every E-V density, or at least every PS-
V density, would also belong to the set of noninteracting
ms-representable densities. Since this crucial step has not
been taken, it is too optimistic to consider the validity of
the KS scheme as being rigorously established [13].

Chen and Stott [30, 31] have considered the problem of
ms representability of q for atomic-like systems in a cen-
tral-®eld external potential. Their analysis deals with the
E-Vs representability of a given density by establishing the
degeneracy of the highest occupied level and the weights
of determinantal states in the ensemble (fractional occu-
pations of the degenerate highest orbitals). They analyzed
how the topology of the orbital energy surfaces then de-
termines the type of ensemble that is obtained. They did
not prove that every interacting density is ms-represent-
able, since they discussed so-called reasonable densities
for which it was assumed a potential ms could be found on

332



a whole domain in (fractional) occupation number space.
However, we do not know whether the molecular systems
considered have a ``reasonable'' interacting ground-state
density in this sense, so that the ms-representability of their
densities is not assured.

We have, however, not encountered a break-down of
the (extended) KS approach.

3 The e�ect of electron correlation on the form of the KS
orbitals and the construction of the KS solution

The e�ect of electron correlation on the KS orbitals and
problems associated with the construction of the KS
solution can be illustrated with the simple example of the
stretched H2 molecule considered in detail in Refs.
[32, 33]. In this case, as for any other two-electron
closed-shell system, the form of the single molecular
orbital (MO) wg of the pure-state KS solution is de®ned
(up to a phase factor) straightforwardly from the density
q as

wg�r� �
������������
1

2
q�r�

r
: �18�

From this, one can see a distinct di�erence between the
KS expansion of the density in a set of orbitals and the
conventional expansion in quantum chemistry of q in
terms of the NOs. Indeed, in the KS case q is represented
for this two-electron system with the single MO (18),
which belongs to the totally symmetric irreducible
representation (irrep)

P�
g of the molecular symmetry

point group D1h. In contrast, the NO expansion for
stretched H2, with the elongated bond distance R�H±H�,
has two dominant contributions from the NO v1g of

P�
g

symmetry and the NO v1u of
P�

u symmetry

q�r� � nNO1g jv1g�r�j2 � nNO1u jv1u�r�j2 �19�
The di�erence between the KS and NO expansions can
be considered in quantitative way, if we expand the KS
MOs fwig and the NOs fvig in terms of the HF MOs
fuig
wi�r� �

X
j

ai�KS�
j uj�r� �20�

vi�r� �
X

j

ai�NO�
j uj�r� �21�

and then formtheKSandNOrepresentationsbKSij andbNOij
of q in terms of products u�i uj of the HFMOs

q�r� �
X

i

X
j

bKSij u�i �r�uj�r� �
X

i

X
j

bNOij u�i �r�uj�r�

�22�
where

bKSij �
X

k

nKSk ak��KS�
i ak�KS�

j �23�

bNOij �
X

k

nNOk ak��NO�
i ak�NO�

j �24�

The bNOij are just the elements of the one-electron
density matrix in the HF MO basis, but the bKSij are not.
Note that the NOs v1g and v1u for the stretched H2

consist, mainly, of the corresponding HF MOs u1g and
u1u, respectively, which in their turn are, essentially, the
bonding and antibonding combinations of 1s atomic
orbitals (AOs) of the H atoms. Thus, the population
bNO1u1u of u1u in the NO expansion (24) is relatively large.
For example, full CI calculation of H2 at R(H-H) = 5
a.u. in a basis with ®ve s- and two p-type con-
tracted Gaussian functions and an additional d-type
Gaussian [32,34,35] yields the values n1u � 0:736,
a1u�NO�1u � 0:976, and bNO1u1u � 0:704. Contrary to this, the
HF expansion (20) for the KS orbital wg cannot contain
the orbital u1u of a di�erent symmetry, so that a1g�KS�1u � 0
and u1u has zero population in the KS expansion (23),
bKS1u1u � 0. This di�erence between the KS and NO co-
e�cients bKS1u1u and bNO1u1u determined for the same q and
the same HFMO product ju1uj2 becomes possible due to
the established redundance of the basis of orbital prod-
ucts fuiujg [36] in one-particle space.

Lacking the direct contribution of u1u, the HF MO
expansion (20) of the KS orbital wg simulates the con-
tribution of u1u to the correlated density (19) by the
inclusion of the higher orbitals ung of

P�
g symmetry

which consist, mainly, of the p- and d-AOs of the H
atoms. Taken with the sign opposite to that of u1g, these
higher orbitals bring, by means of the product terms
bKSn1 u�ng�r�u1g�r�, the hybrid cross-terms of the type ÿspz
and ÿsdz2 (z is the molecular axis) into the density
jwg�r�j2 � q�r�. The cross-terms reduce the density
around the bond midpoint, reproducing e�ectively the
contribution to q of the orbital u1u, which has a nodal
plane passing through the bond midpoint. One may
wonder if the necessity to build correlation induced
features of the density into the occupied KS orbitals
leads to special requirements for the primitive basis set.
Such a situation has been identi®ed in the case of the
dissociating electron pair bond of H2 in [33]. In that case
the rg and ru NOs can be very well represented in a
minimal basis by

wg;u�r� �
1��������������

2� 2S
p �a�r� � b�r�� �25�

where a�r� and b�r� are the 1s AOs of the H atoms A and
B, and S is the overlap integral

S �
Z

a�r�b�r�dr �26�

However, such a minimal basis fails to reproduce the
features of the true rg KS orbital (18) around the bond
midpoint. There is, however, no indication that demands
on basis sets in the KS case are comparable to those in
MP2 or other correlated calculations. The GGA func-
tionals Exc�q�r�� are in fact not sensitive to such small
features in the density as we are dealing with at present,
and basis sets that are adequate at the SCF level will
usually su�ce.

In this paper the KS potential ms and KS orbitals fwig
have been obtained from the ab initio CI density q
by iterative solution [7] of the KS equations, with the
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orbitals wi being expanded in the same basis fuig of HF
MOs as was used in the CI calculations. In this paper a
variant of the iterative procedure has been employed,
according to which the components uijmextjuj


 �
and

uijmH�q�juj


 �
of the matrix elements uijmsjuj


 �
are ®xed

and only the unknown exchange-correlation potential
mxc�r� is updated during iterations, starting from some
initial guess m0xc�r�. At the mth iteration, the KS equa-
tions are solved with the potential mm

xc�r�
ms�r� � mext�r� � mH�r� � mm

xc�r� �27�
mm
xc�r� � f m�r�mmÿ1

xc �r� �28�
calculated from the mmÿ1

xc �r� of the previous iteration with
the correction factor f m. The latter is obtained from the
density qmÿ1 from the �mÿ 1�th iteration and the target
density q

f m�r� � q�r� � a
qmÿ1�r� � a

�29�

The parameter a smooths out the e�ect of the remote
exponential density tails on the procedure. Matrix ele-
ments uijmm

xcjuj


 �
have been calculated using a numerical

integration with grids according to [19]. The accuracy of
the resultant KS solution is characterized by the value of
the absolute integral error Dq at the m-th iteration

Dq �
Z
jqm�r� ÿ q�r�jdr �30�

As the ®rst option, we always attempt to construct
the pure state KS solution, so that a trial density qm is
formed according to (6) with the doubly occupied KS
counterparts wi of the N/2 lowest energy HF orbitals ui.
When the pure state is attainable, this leads to the KS
solution, which reproduces (up to a small error Dq) the
target correlated density and complies with the ``Aufbau
principle'', i.e. all the occupied orbitals have lower
energies than the unoccupied ones. On the other hand,
if the pure state is unattainable, the iterative procedure
(27±29) converges to a ``non-Aufbau'' solution, for
which Dq is, usually, also small, but the lowest unoc-
cupied MO (LUMO) has a lower energy than the highest
occupied MO (HOMO), i.e., a hole below the Fermi
level appears. If the LUMO has a di�erent symmetry
than the HOMO, this situation may arise during the
iterations when a ®xed number of orbitals is occupied in
each irreducible representation. An attempt to obtain
the KS solution with reversed occupation, with the hope
to achieve Aufbau, fails, since with this occupation
pattern the iterative procedure does not converge to a
solution with a small Dq. In case one is performing a
standard self-consistent KS calculation using approxi-
mate functionals, this failure to accurately describe the
correlated density would of course not be noticed, but in
this case reversal of the occupation pattern will typically
again lead to a non-Aufbau situation, since ®lling
the hole in the orbital below the Fermi level will raise the
orbital energy of the former hole orbital, and lower
the energy of the former ``HOMO'' that is now de-oc-
cupied, to the e�ect that the orbital energies cross and
Aufbau is again violated (cf. Fig. 1 of [17]).

In order to provide the KS solution for this case we
have used a procedure of ``evaporation of the hole below
the Fermi level'' as given in [37]. It consists in fractional
occupation of the LUMO w�N=2�1�, starting with
n�N=2�1� � 0 with simultaneous depopulation of the
HOMO wN=2 when forming a trial density qm (we con-
tinue to number these orbitals as N=2� 1 and N=2 re-
spectively, although their order has reversed). This
redistribution of the electrons increases the energy of the
former and decreases the energy of the latter orbital. At
certain fractional occupations n�N=2�1� and nN=2 the or-
bital energies eN=2 and e�N=2�1� are equal to each other
and the target density q is reproduced with an ensemble
KS solution. These energies will de®ne the Fermi level
energy eF, e�N=2�1� � eN=2 � eF, so that there will be no
fractional occupations below the Fermi level. The
corresponding density assumes the form (10) of the
ensemble representable (E-Vs�q. The procedure is anal-
ogous to the one applied in Xa [15] and generalized
gradient approximation (GGA) [17] calculations, the
di�erence being that our KS calculations are not ap-
proximate, but are aimed at reproducing the correlated
density. Our results therefore will not be artifacts of the
Xa or some local-density (LDA) or density-gradient
approximation (DGA).

Fortunately, in our actual calculations we managed in
all cases to represent q either with the pure-state form (6)
or with the ensemble form (10). Thus, we did not
encounter the breakdown of the KS theory (option 3 of
the preceding section) though, in principle, one cannot
exclude such a possibility.

4 Results for CH2

The correlated density q of the CH2 and C2 molecules,
the basic quantity for construction of the KS solution,

Fig. 1. The exchange-correlation potential mxc along the C±H bond
of CH2. The C nucleus is in the origin and the H nucleus is at 2.099
bohr
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has been obtained with con®guration interaction (CI)
calculations performed by means of the ATMOL
package [38]. The lowest singlet state of CH2 has been
calculated at its equilibrium geometry [39], with the
bond distance R�C±H� � 2:099 a.u. and angle
��HCH� � 102:4�. The KS potential and orbitals have
been constructed in the same basis of HF MOs as was
used in the CI calculations by means of a Gaussian
orbital density functional code [32, 40] based on the
ATMOL package.

The correlation-consistent polarized core-valence (cc-
pCV) basis sets of Woon and Dunning [41] of contracted
Gaussian functions have been used for the calculations.
In order to describe properly various correlation e�ects,
a large number of polarization functions of higher an-
gular momenta of both core and valence size are in-
cluded in these sets. In order to study the e�ect of the
basis on the KS solution for CH2, the calculations in a
triple zeta basis augmented with additional polarization
functions (aug-cc-pCVTZ) are compared with those
performed in a quadruple zeta (cc-pCVQZ) basis. To
study the e�ect of the size of the CI expansion, CI cal-
culations with all single and double excitations from the
single reference HF con®guration (SRCI) are compared
with multireference CI(MRCI) calculations. Using all
possible excitations of the HF con®guration in the
internal space of six lowest HF MOs produced 90
reference con®gurations for the MRCI. The MRCI
calculation performed in the largest cc-pCVQZ basis
yields the total energy E � ÿ39:115 Hartrees, which is
only 0.002 Hartrees higher than that obtained in the
benchmark calculation of CH2 with the coupled cluster
method with all single and double excitations (CCSD)
by Grev and Schaefer [42].

The electron correlation produces a peculiar e�ect on
the electron distribution of CH2. The main HF con®g-
uration in the CI expansion for the singlet state is
1a212a211b223a21, which corresponds to two r-bonds C±H
(2a21 and 1b22) and the r-electron lone pair (3a21). This can
be seen from Table 1, where the populations bNOij
Eq. (24) of the products uiuj of HF MOs in the NO
representation of q are presented. However, admixture
of the excited HF con®guration 1a212a211b221b21 in the CI
expansion provides a relatively small, but non-negligible
population bNO1b11b1 � 0:067 of the orbital u�1b1�, which is
the p-type orbital oriented perpendicular to the molec-
ular plane.

Construction of the KS solution in the largest cc-
pCVQZ basis and with the density obtained from the
largest (MR)CI produces a pure state with the con®gu-
ration of the KS orbitals 1a21 (i.e., all the occupied KS
orbitals are of rtype). The coe�cients bKSij of the corre-

sponding KS representation of q in terms of the HF MO
products uiuj are also displayed in Table 1. In complete
analogy with the stretched H2 molecule discussed in the
previous section, the HF MO u�1b1� has zero popula-
tion in the KS representation bKS1b11b1 � 0, since its sym-
metry (ptype) is di�erent from the rtype symmetry of all
occupied KS orbitals. The contribution of ju�1b1�j2 to
the target density q in the NO expansion is replaced in
the KS representation by an admixture of higher orbitals
ui of a1 symmetry in the HF MO expansion of the
occupied KS orbitals w�2a1� and w�3a1�, which results
in enhanced populations of the cross-products
u�2a1�u�na1� and u�3a1�u�na1� �n > 3�. In Table 1 the
populations of the cross-products u�2a1�u�4a1� and
u�3a1�u�4a1� are compared for the NO and KS repre-
sentation and, indeed, the populations for the latter
representation are considerably larger than those for the
former representation.

Thus, the basis of HF MOs, in which all calculations
have been performed, should include a su�cient num-
ber of orbitals of the relevant symmetry (a1 orbitals in
this case) in order to represent properly the correlation
e�ect on the form of KS orbitals. The basis set quality
may even a�ect the type (one-determinantal pure state
or ensemble) of KS solution that is obtained. Table 2
compares the energies and occupations of the frontier
KS orbitals w�3a1� and w�1b1� as well as the KS and
HF energies obtained with the aug-cc-pCVTZ and cc-
pCVQZ basis sets and with SRCI and MRCI expan-
sions. One can see from Table 2 that the type of the KS
solution depends essentially on the basis set size. In
particular, at the TZ level the pure state ``Aufbau'' KS
solution is obtained for a limited (SR) CI, with the fully
occupied KS orbital w�3a1� having a lower energy than
the empty orbital w�1b1�. However, when more corre-
lation is included via the MRCI, calculation at the tri-
ple zeta level fails to produce a PS solution. Instead, a
``non-Aufbau'' situation results, with the empty orbital
w�1b1� having a lower energy than the fully occupied
w�3a1� (a hole below the Fermi level). The procedure of
``evaporation of a hole below the Fermi level'' described
in the previous section produces in this case an en-
semble KS solution with a very small occupation
(0.008) of the orbital w�1b1�, which becomes degenerate
with w�3a1�. Only at the QZ level do calculations for
both SRCI and MRCI yield the pure state ``Aufbau''
KS solution.

Note that the basis set e�ect on the KS energy
characteristics is not very pronounced (Table 2). The KS
kinetic energies Ts are somewhat increased when going
from an aug-cc-pCVTZ a-pCVQZ basis, being consis-
tently higher than their HF counterparts. However, the
DFT exchange energies Ex and the KS expectation val-
ues EKS calculated at various basis set and CI levels
appear to be rather close to each other and to the cor-
responding exchange EHF

x and total EHF HF energies.
This similarity for these speci®c energies (as opposed to
other energy components) for KS and HF solutions has
been observed before [25].

In Fig.1 the exchange-correlation potential mxc of the
pure state constructed for CH2 with the most extensive
cc-pCVQZ MRCI calculation is plotted along the C±H

Table 1. Populations bNOij and bKSij of the products of the Hartree-
Fock MOs ui and uj in the Kohn-Sham and natural orbital repre-
sentations of the correlated density for CH2

bij 1a11a1 2a12a1 1b21b2 3a13a1 1b11b1 2a14a1 3a14a1

NO 1.998 1.964 1.960 1.899 0.067 0.011 )0.020
KS 2.000 1.998 2.000 1.998 0.0 0.046 )0.063
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bond axis as a function of the distance z from the C
nucleus. In mxc there is a well around the C nucleus, with
a depth of ÿ5 a.u. that agrees well with that found in [22]
for a free C atom. The well is terminated with the typical
local maximum (intershell peak) between the core and
valence regions of atom C. In the region of the C±H
bond mxc has a ¯at form and, remarkably, the location of
the H nucleus at 2.1 a.u. can be recognized only by the
change of the slope of mxc at that point. This is a char-
acteristic feature of a covalent bond X±H, which has
been established previously also for the BH molecule
[24]. For larger z the potential mxc approaches smoothly
its Coulombic asymptotics mxc�z� ! ÿ1=z.

Figure 2 is a contour plot of mxc in the plane that is
perpendicular to the molecular plane and crosses it along
the bisector of the valence angle H±C±H, thus repre-
senting the region of the electron lone pair of CH2. The
C nucleus is at the position (0,0) and the positive part of
the z axis is the bisector of the acute angle H±C±H. The
distribution of mxc appears to characterize the non-
bonding (lone-pair) character of the HOMO w�3a1�,
being slightly more attractive in the direction away from
the H atoms (negative z values). Along the z axis mxc
displays intershell peaks near z � �0:6 a.u. and then
local wells near z � �1:0 a.u., which indicate the region
of the lone pair of the C atom at negative z values. Note
that, in the direction perpendicular to the molecular
plane, mxc lacks the intershell peak and that it increases
monotonically with increasing distance from the C nu-
cleus.

The results of this section show that even for CH2, for
which the wave function W has a relatively weak multi-
determinantal character, great care should be exercised
in order to obtain a KS solution of the proper form.
Only at the QZ level does it become possible to construct
the pure-state solution. As will be shown in the next
section, in calculations at this level for C2, for which the
wave function W has a stronger multideterminantal
character, a great variety of KS solutions is produced for
various bond distances R�C±C�, ranging from a pure
state through an ensemble with a weak accidental
degeneracy to an ensemble with a strong accidental
degeneracy.

5 Results for C2

CI calculations for the singlet ground state of the C2

molecule with subsequent construction of the KS
solution have been performed at its equilibrium bond
distance Re � 2:348 a.u. [39], as well as at the shorter
distance R�C±C� � 1:8 a.u. and at larger distances
R�C±C� � 2:8, 3.0, 3.2 and 4.0 a.u. The large cc-pCVQZ
basis set described in the previous section has been used
for the C atoms and MRCI calculations have been
performed to obtain the correlated q. The MRCI
employed 27 reference con®gurations selected in the
active space of the nine lowest HF MOs. All the
con®gurations needed to provide the proper dissociation
limit of C2[34] are included in the reference space. At this
level the MRCI calculation performed at Re is able to
recover 90% of the Coulomb correlation energy of C2

estimated empirically from spectroscopic data [43].
C2 is an exceptional molecule since at the equilibrium

bond distance Re�C±C� it can be approximately described
as having two p bonds and no r bond. Whole classes of
chemical compounds are known (the saturated hydro-
carbons, for example), which have only r bonds and no p
bonds, but the reverse situation is very rare, indeed. One
can see this feature of C2 from the data in Table 3 where
the populations bNOij (Eq. 24) of the products uiuj of HF
MOs in the NO representation of q are presented for the
bond distances considered. The main HF con®guration

Table 2. Kohn-Sham and Har-
tree-Fock energy characteristics
(a.u.) and occupations of the
frontier Kohn-Sham orbitals
for CH2. The Kohn-Sham
orbitals reproduce target
densities obtained from various
types of CI calculations. SR: all
singles and doubles from the
HF reference con®guration;
MR: all singles and doubles
from 90 reference con®gura-
tions; TZ: aug-cc-pCVTZ basis
[41]; QZ: cc-pCVQZ basis [41]

q from CI: SR-TZ MR-TZ MR-TZ SR-QZ MR-QZ
KS solution: PS Hole Ensemble PS PS

Kohn-Sham
Dq 0.0061 0.0069 0.0062 0.0057 0.0057
e(3a1) )0.391 )0.387 )0.390 )0.394 )0.389
e(1b1) )0.363 )0.398 )0.390 )0.357 )0.384
n(3a1) 2.0 2.0 1.992 2.0 2.0
n(1b1) 0.0 0.0 0.008 0.0 0.0
Ts 38.910 38.900 38.900 38.940 38.932
Ex )5.781 )5.776 )5.777 )5.786 )5.780
EKS )44.912 )44.909 )44.909 )44.913 )44.911

Hartree-Fock
Basis: TZ QZ
THF 38.846 38.860
Ex

HF )5.788 )5.790
EHF )44.916 )44.918

Fig. 2. Contour plot of the exchange-correlation potential mxc of
CH2 in a plane perpendicular to the molecular plane. The C nucleus
is at the position (0,0) and the positive part of the z axis is the
bisector of the acute angle H-C-H; the electron lone pair of CH2 is
located around the negative part of z axis
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in the CI expansion at Re�C±C� is 2r2g2r2u1p4u (we omit the
core orbitals 1rg and 1ru), corresponding to two p bonds
(1p4u) and no r bond (both the 2s±2s bonding and anti-
bonding orbitals are occupied: 2r2g2r

2
u). The weight of

this con®guration is c0 � 0:857, and the admixture of the
excited con®guration 2r2g1p

4
u3r

2
g (both a 2s and a 2p r

bond) with the coe�cient c1 � ÿ0:333 produces net de-
population of the r antibonding 2ru HF MO and pop-
ulation of the pz±pz r bonding MO 3rg (Table 3). The
con®guration 2r2g2r

2
u1p

2
u3r

2
g, corresponding to excitation

of two p electrons to the 2p±2p r bond 3rg, does not
contribute much at Re.

At a shorter distance R�C±C� � 1:8 a.u., the relative
destabilization of the 2ru MO leads to stronger in-
volvement of 2r2g1p4u3r

2
g, i.e., the 2ru population further

decreases and that of 3rg increases, so that one can
speak of partial formation of both 2s and 2p based r
bonds, while the two p bonds are fully retained. At these
short distances one cannot unequivocally identify occu-
pation of 3rg with formation of a 2pr bond, since the 2pz
orbitals do not overlap particularly favorably due to the
nodal plane, and in addition the 2pz has to be made
orthogonal to the opposite 2s (orthogonality of 3rg to
2rg). Elongation of the C±C bond from its Re value
stabilizes the 2ru MO, which becomes completely oc-

cupied (note the equivalence of 2r2g2r
2
u to the presence of

two 2s lone pairs). It also leads to a relative weakening of
the 2p-based p bonds compared to the 2p-based r bond.
As a result, the population of 3rg again increases, this
time in expense of the p bonding MO 1pu. At
R�C±C� � 2:8 a.u. 1p4u ! 1p2u3r

2
g becomes the leading

excitation and at R�C±C� � 3:0 a.u. the wave function W
has a strong multideterminantal character, with the de-
terminant W0 � jr2g2r2u1p4uj and the con®guration state

function (CSF) W1 � j�2r2g2r2u1p2u3r2g�1
P�

g i � 1��
2
p �j2r2g

2r2u1p
2
ux3r

2
gj � j2r2g2r2u1p2uy3r

2
gj� being mixed with the

coe�cients c0 � 0:638 and c1 � ÿ0:624. This result in a
large population of the HF MO 3rg (Table 3), which at
these longer distances is clearly 2pz±2pz r bonding.

At R�C±C� � 3:2 a.u. the CSF j�2r2g2r2u1p2u3r2g�1
P�

g i
starts to dominate with the coe�cient c1 � ÿ0:854,
while 2r2g2ru

21p4u, which dominates at shorter R�C±C�,
has a much smaller contribution c0 � 0:302. At
R�C±C� � 4:0 a.u. the contribution of 2r2g2r

2
u1p

4
u re-

duces further, c0 � 0:212, and the population of the HF
MO 1pu reduces to bNO1pux1pux

� bNO1puy1puy
� 1:738, while that

of 3rg increases to bNO3rg3rg � 1:782. Note also an increase
of population of the p-antibonding MO 1pg with in-
creasing bond distance. The observed trends are in
qualitative agreement with those reported in [12].

The demonstrated essentially multideterminantal
character of the wave function has a remarkable e�ect
on the corresponding KS solution for the C2 molecule.
Table 4 presents the density error (30) of the KS solu-
tion, energies of the valence KS orbitals and changing
total occupation n�1pu� of the KS orbitals w�1pux� and
w�1puy� and occupation n�3rg� of the orbital w�3rg� (the
KS orbitals w�2rg� and w�2ru� are always doubly
occupied and w�1pg� is always empty). At the shortest
distance R�C±C� � 1:8 a.u. a one-determinantal pure-
state KS solution is obtained with the con®guration
2r2g2r

2
u1p

4
u and with w�2ru� as the HOMO at ÿ0:493 a.u.

just above the fully occupied 1pu at ÿ0:505 a.u. and just
below the 3rg at ÿ0:478 a.u.. However, at Re and
R�C±C� � 2:8,3.0 a.u. attempts to obtain pure-state so-

Table 3. Populations bNOij of the products of the Hartree-Fock
MOs ui and uj in the natural orbital representation of the correlated
density for C2. The bNOij are the elements of the one-electron density
matrix in the HF MO basis. For 1xu 1pu the sum of the x and y
components is given, bNO1pux1pux

� bNO1puy1puy

R(C±C), a.u. 1.8 2.348 2.8 3.0 3.2 4.0
bNOij

2rg2rg 1.973 1.966 1.962 1.961 1.958 1.952
2ru2ru 1.415 1.669 1.819 1.896 1.928 1.934
1pu1pu 3.896 3.804 3.502 2.824 2.062 1.738
3rg3rg 0.560 0.316 0.371 0.962 1.722 1.782
1pg1pg 0.016 0.060 0.112 0.113 0.097 0.209
2rg3rg )0.152 )0.201 )0.209 )0.130 0.00 )0.013

Table 4. Energy characteristics
(a.u.), occupations of the fron-
tier Kohn-Sham orbitals and
density errors Dq of the Kohn-
Sham (pure state or ensemble)
and Kohn-Sham-like (hole
below Fermi level) solutions
for C2

R(C±C), a.u. 1.8 2.348 2.8 3.0 3.2 4.0

Pure state (at 1.8 a.u.) and ensemble (other R) Kohn-Sham solutions
e(2rg) )0.950 )0.895 )0.831 )0.806 )0.792 )0.710
e(2ru) )0.493 )0.538 )0.564 )0.573 )0.580 )0.617
e(1pu) )0.505 )0.456 )0.431 )0.420 )0.414 )0.381
e(3rg) )0.478 )0.456 )0.431 )0.420 )0.414 )0.381
e(1pg) )0.085 )0.187 )0.253 )0.270 )0.284 )0.323
n(1pu) 4.0 3.912 3.652 3.019 2.201 2.050
n(3rg) 0.0 0.088 0.348 0.981 1.799 1.950
Dq 0.012 0.004 0.008 0.008 0.007 0.015

Kohn-Sham solutions with a hole below the Fermi level
e(2rg) ± )0.894 )0.843 )0.864 )0.788 )0.708
e(2ru) ± )0.551 )0.604 )0.695 )0.574 )0.616
e(1pu) ± )0.450 )0.418 )0.399 )0.429 (h) )0.385 (h)
e(3rg) ± )0.476 (h) )0.504 (h) )0.631 (h) )0.384 )0.372
e(1pg) ± )0.185 )0.247 )0.267 )0.296 )0.326
n(1pu) ± 4.0 4.0 4.0 2.0 2.0
n(3rg) ± 0.0 0.0 0.0 2.0 2.0
Dq ± 0.008 0.017 0.058 0.020 0.018
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lution with the same con®guration lead to a single-de-
terminant solution with the LUMO w�3rg� having lower
energy (Table 4) than the HOMO w�1pu� (a hole below
the Fermi level). The 2ru drops signi®cantly and will be
fully occupied without doubt. Similarly, an attempt to
obtain the KS solution at R�C±C� � 3:2 and 4.0 a.u.
with the occupation pattern 2r2g2r2u1p

2
u3r

2
g also produces

a hole below the Fermi level. This time the hole is
present in the partially occupied orbitals w�1pux� and
w�1puy�, which have lower energy than the highest
doubly occupied w�3rg�.

The procedure of ``evaporation of a hole below the
Fermi level'' applied at R > 1:8 a.u. produces a KS so-
lution with accidental degeneracy of the orbital w�3rg�
with w�1pux� and w�1puy�, so that all three orbitals have
the same energy (Table 4). This solution corresponds to a
three-determinantal ensemble with the density matrix M̂s

M̂s � d0jDs0ihDs0j � d1 1
2jDs1ihDs1j � 1

2jDs2ihDs2j
ÿ �

d0 � n�1pu� ÿ n�3rg�
4

; d1 � n�3rg�
2

�31�

where Ds0 is the KS determinant j2r2g2r2u1p4uj, Ds1 is the

determinant j2r2g2r2u1p2ux3r
2
gj and Ds2 is the determinant

j2r2g2r2u1p2uy3rgj. The density matrix M̂s provides the

E-Vs representability of the correlated q with fractional
occupations n�1pu� and n�3rg� of the orbitals w�1pu� and
w�3rg�, respectively.

The contributions of the con®gurations Ds 0 and Ds1,
Ds2 change dramatically with bond distance following
the trend for the CI expansion of W discussed above. At
the equilibrium distance Re a KS ensemble is obtained
with a ``weak'' accidental degeneracy in the sense that a
low occupation n�3rg� � 0:088 of W�3rg� is enough to
make this orbital degenerate with W�1pu�, as expected
from the small di�erence between the orbital energies
in the single-determinantal solution ��3rg � ÿ0:476;
�1pu � ÿ0:450�: As a result, the KS solution in this case
is close to the pure-state Ds0 with low weights
n�3rg�=4 � 0:022 of the determinants Ds1 and Ds2 in the
density matrix (32).

At a longer distance R(C±C) � 2:8 a.u. a ``medium''
ensemble is obtained, while at R(C±C) � 3:0 a.u. a
``strong'' ensemble is formed with n�3rg� � 0:981 and
the weights n�3rg�=4 � 0:245 and fn�1pu� ÿ n�3rg�g
=4 � 0:510 of the determinants Ds1;Ds2 and Ds0,
respectively. The formation of this KS ensemble with a
strong accidental degeneracy re¯ects the abovementioned
strong multideterminantal character of the function W of
the interacting system at this distance. At R(C±C) � 3:2
a.u. the mixture of the determinants in the ensemble
is reduced, since the weight of Ds0 reduces to
fn�1pu� ÿ n�3rg�g=4 � 0:100; while those of Ds1 and Ds2

increase to n�3rg�=4 � 0:450, and the ensemble (31) be-
comes rather close to a (by symmetry equal)mixture of the
determinants Ds1 and Ds2: At R�C±C� � 4:0 a.u. the ac-
cidental degeneracy of the ensemble can be again called
``weak'', the weight fn�1pu� ÿ n�3rg�g =4 � 0:025 of the
con®guration Ds0 in (32) becomes really small.

From Table 4 one can compare the characteristics of
the ensemble KS solution with those of the KS-like
solution with a hole below the Fermi level. In all cases

the density error Dq of the ensemble solution is smaller
than that for the KS-like solution, though the corre-
sponding di�erence is not large for weak and medium
ensembles. However, the one-determinantal solution
clearly fails to reproduce the q corresponding to the
function W with a strong multideterminantal character
at R(C±C) � 3:0 a.u., the corresponding Dq amounts to
0.058 elections more than 7 times as large as Dq of the
ensemble solution. In this case the hole in the 3rg is more
than 0.2 a.u. below the Fermi level. The inferior quality
of the KS-hole solution follows also from a comparison
of the kinetic energies Ts, which will be made below.

At Re and R(C±C) � 2:8 and 3.0 a.u. the occupation
of the 3rg is increased upon forming the ensemble so-
lution and the energies of all r orbitals for the ensemble
are shifted upwards compared to those of the solution
with a hole (with the only exception of the orbital 2rg at
Re�; while the energies of all p-orbitals are shifted
downwards. At R(C±C) � 3:2 and 4.0 a.u. the opposite
trend takes place, in agreement with the fact that at these
distances the occupation of 1pu is increased when going
to the ensemble solution. These trends are also re¯ected
in the form of the exchange-correlation potentials mxc for
both types of solution, which will be discussed later in
this section.

Table 5 displays the populations bKSij (Eq. 23) of the
products uiuj of HF MOs in the KS representation of q,
which can be compared with the populations bNOij in the
NO representation from Table 3. The di�erences illus-
trate the well-known fact that the KS solution does not
provide the full one-electron density matrix but just the
diagonal density. At R(C±C) � 1:8 a.u. the comparison
reveals a distinct di�erence between the KS orbitals of
the pure determinantal state and the NOs, analogous to
that established for the stretched H2 molecule in Sect. 3
and the CH2 molecule in the previous section. The
population bKS3rg3rg � 0:016 of the r bonding HF orbital
u�3rg� in the KS representation is very small, while
u�3rg� is relatively highly populated in the NO repre-
sentation, bNO3rg3rg � 0:560: On the other hand, the pop-
ulation bKS2ru2ru � 1:994 of the r antibonding HF orbital
u�2ru� is higher than its NO counterpart bNO2ru2ru � 1:415:
The NO coe�cients re¯ect an appreciable population of
the HF MO u�3rg� and depopulation of u�2ru�; in
agreement with considerable admixture of the excited
con®guration 2r2u ! 3r2g in the CI. The NOs v�3rg� and
v�2ru� are very similar to the corresponding HF MOs
and their occupation numbers therefore are close to the
diagonal elements bNO3rg3rg and bNO2ru2ru . The KS coe�cients
re¯ect the fact that the KS pure-state determinant with
con®guration 2r2g2r

2
u1p

4
u lacks the 3rg orbital. The e�ect

on the diagonal density of admixture of 2r2u ! 3r2g in
the CI wavefunction has to be built in by changing the
orbitals (particularly 2rg� away from the HF MO
character, which can only be e�ected by mixing with
unoccupied HF MOs of the same symmetry. The KS
orbital w�2rg�, while still being predominantly the HF
u�2rg�, has some contribution, with minus sign, of the
HF MO u�3rg�. In analogy with the H2 and CH2 cases,
the e�ect of excitations such as 2r2u ! 3r2g and
1p4u ! 1p2u3r

2
g is reproduced in the KS representation

by enhanced populations of the cross-products uiuj of
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the HF MOs. Indeed, the population of the product

u�2rg�u�3rg� in the KS representation bKS2rg3rg � ÿ0:359
is much larger than bNO2rg3rg � 0:152 in the NO repre-

sentation. The diagonal bKSij in Table 5 shows that the

coe�cients of the u�2rg� and u�3rg� in the KS w�2rg�
are 0.995 and ÿ0:089 respectively, leading to the sig-
ni®cant o�-diagonal bKS2rg3rg � ÿ0:359:

Similar observations can be made with respect to
the comparison of the NO representation at Re and
R(C±C) � 2:8 and 3.0 a.u. with that for the KS-like
single determinant solution with a hole below the Fermi
level (Table 5). It is interesting to note that in going from
3.0 to 3.2 bohr the hole-solution changes con®guration
from a hole in 3rg to a hole in 1pu (cf. populations in
Table 4), which is re¯ected in an abrupt change in the
diagonal bKSÿhole3rg3rg from 0.026 to 1.999, and in bKSÿhole1pu1pu
from 3.972 to 1.992. According to Table 4, the error Dq,
although larger than for the ensemble solutions, is not
excessive. Apparently the orbitals in these hole deter-
minants are able to reorganize signi®cantly so as to
continue to describe the target CI density reasonably
well, almost irrespective of the con®guration (for in-
stance, either the KS 3rg fully occupied or empty). This
must have important consequences for shape of the or-
bitals and of the KS potentials as well. The sudden

change bKSÿhole2rg3rg
from ÿ0:448 at R � 3:0 a.u. to 0.00

at R � 3:2 a.u. is testimony to this change (of the 2rg
orbital in this case).

It is interesting to note that at these larger distances,
judging from the coe�cients bKSij and bNOij , the KS or-
bitals of the ensemble solution are closer to the NOs
than the orbitals of the one-determinantal hole solution,
which is especially so for the ``medium'' and ``strong''
ensembles at R(C±C) � 2:8 and 3.0 a.u. For the ensem-
ble at 3.0 bohr the population of the HF MO
u�3rg�; bKSÿensemble3rg3rg � 0:976; is much larger than that for
the KS-hole solution, bKSÿhole3rg3rg

� 0:026: The latter has to
be built up fully by mixing of the HF u�3rg� into the KS
2rg whereas in the ensemble the KS 3rg consisting pre-
dominantly of u�3rg�, already has an occupation num-
ber n�3rg� � 0:981: The population of the HF u�3rg�
in the ensemble solution is in fact rather close to that

for the NO representation �bNO3rg3rg � 0:962, Table 3).

Similarly, the populations bKSÿensemble1pu1pu
� 3:014 and

bKSÿensemble2rg2rg
� ÿ0:169 for the ensemble are much closer

to the bNO1pu1pui � 2:834 and bNO2rg3rg � ÿ0:130 for the NO

representation as compared to bKSÿhole1pu1pu � 3:972 and

bKSÿhole2rg3rg � ÿ0:448 for the KS-hole solution. The en-

semble con®guration of the KS orbitals 2r2g2r
2
u1p

3:019
u

3r0:981g (occupation numbers from Table 4) contains the
fractionally occupied orbital w�3rg), which has a domi-
nant contribution of the corresponding HF MO u�3rg�,
and the depopulated orbital w�1pu�. This con®guration
is close to the con®guration of the NOs 2r1:966g 2r1:898u
1p2:826u 3r0:970g (NO occupation numbers used), which
represents the correlated q. Thus, one can consider the
occupied KS orbitals of the ensemble as plausible
approximations for the corresponding NOs. They will of
course not be exactly equal.

In Table 6 the energy characteristics obtained for the
KS pure state or ensemble and for the KS-like solutions
with a hole below the Fermi level at various distances
R(C±C) are compared with the corresponding HF
characteristics. Considering ®rst the ensemble solutions
we note that the kinetic energies Ts of the KS ensemble
solution are consistently higher than their HF counter-
parts THF, with the corresponding di�erence being in-
creased with increasing R(C±C). As was established
previously for other molecules [24, 25], this is due to the
contraction of the correlated q around the nuclei as
compared with the HF density qHF, and the increasing
non-dynamical correlation at larger bond distances,
which is neglected in the HF approximation. On the
other hand, the ensemble exchange energies Ex are close
to the HF ones EHF

x for the ensembles with a weak
accidental degeneracy, and Ex are somewhat larger (in
absolute magnitude) than EHF

x for medium and strong
ensembles. When summing up, di�erences between in-
dividual KS and HF energy components tend to com-
pensate each other, so that for the distances R(C±C) up
to 3.0 a.u. the KS expectation values EKS are rather close
to the HF energies EHF (Table 6). For R(C±C) � 3:2 and
4.0 a.u. the ensemble EKS becomes de®nitely higher than
EHF of the con®guration 2r2g2r

2
u1p

2
u3r

2
g.

Table 5. Populations bKSij of
the products of the Hartree-
Fock MOs ui and uj in the
Kohn-Sham representations of
the correlated density for C2.
The 1pu 1pu contributions are
summed over the x and y
components

R(C±C), a.u. 1.8 2.348 2.8 3.0 3.2 4.0

Pure state (at 1.8 a.u.) and ensemble (other R) Kohn-Sham solutions
bKSÿensembleij

2rg2rg 1.979 1.987 1.989 1.992 1.999 1.999
2ru2ru 1.994 1.996 1.998 1.998 1.996 1.994
1pu1pu 3.999 3.910 3.648 3.014 2.192 2.034
3rg3rg 0.016 0.098 0.353 0.976 1.799 1.948
1pg1pg 0.00 0.00 0.00 0.00 0.00 0.00
2rg3rg )0.359 )0.300 )0.253 )0.169 0.00 0.00

Kohn-Sham solutions with a hole below the Fermi level
bKSÿholeij

2rg2rg ± 1.985 1.982 1.955 1.998 1.998
2ru2ru ± 1.993 1.981 1.904 1.987 1.992
1pu1pu ± 3.996 3.990 3.972 1.992 1.984
3rg3rg ± 0.012 0.014 0.026 1.999 1.998
1pg1pg ± 0.00 0.00 0.00 0.00 0.00
2rg3rg ± )0.315 )0.338 )0.448 0.00 0.00
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Comparing next to the KS solutions with a hole
below the Fermi level, we note that the Ts values for the
ensemble KS solution are consistently lower. This
di�erence is marginal for weak ensembles at Re and
R(C±C) � 4:0 a.u. as well as at R(C±C) � 3:2 a.u., how-
ever, it becomes appreciable for medium and strong
ensembles at R(C±C) � 2:8 and 3.0 a.u. (Table 6). Since
a true KS solution must have the minimal (for a certain
q) kinetic energy, one can conclude that the ensemble
represents such a true KS solution. The one-determi-
nantal solution with a hole is of inferior quality, which is
especially clear for the case when the wave function W of
the interacting system has a strong multideterminantal
character. For the hole solutions the EKS values are
clearly inferior at distances up to 3.0 bohr.

Figure 3 presents the KS exchange-correlation po-
tential mxc constructed at R(C±C) � Re 2:8; 3:0 and 4.0
a.u. The potentials are plotted along the C±C bond axis
as functions of the distance z from the bond midpoint, so
that half of symmetrical picture for the C2 dimer is
presented. The ensemble mxc displays all the typical fea-
tures of the exchange-correlation potentials for a dimer
molecule A2, which have been established and interpre-
ted previously for the dimers Li2;N2;F2 [44]. These are a
deep well around the nucleus, atomic intershell peaks,
Coulombic asymptotics at larger z and a plateau in the
bonding region (small z). In particular, a plateau re¯ects
the form in the r-bonding region of the exchange (Fer-
mi) hole, since the potential of this hole brings a domi-
nant contribution to mxc. In this region the Fermi hole is
delocalized symmetrically over both C atoms and is es-
sentially static, i.e., it does not change shape when the
reference position is changed around the bond midpoint
[44, 45]. Increase of R(C±C) produces a change of the
form of mxc in the r-bonding region around the bond
midpoint from a plateau to a more Coulombic-like
shape.

While mxc at all R(C±C) considered looks``normal'' for
the ensemble, the potential for the KS-like solution with
a hole is heavily distorted at R(C±C) � 2:8 and 3.0 a.u.
(Fig. 3b, c). This appears to be the price for an attempt
to reproduce with just one determinant the density from
a CI wave function W that has a strong multi-
determinantal character. We already noted that the oc-
cupied KS orbitals in this case have to change shape

considerably in order to incorporate the character of HF
MOs that are occupied in the CI and in the ensemble
solution. This of course requires substantial changes in
the potential, which have to be e�ected through mxc. If W
consists of a relatively weak mixture of determinants, at
Re and R(C±C) � 4:0 a.u., the potentials for both types
of solution are rather close to each other, though at Re

the potential for the KS-hole solution does not possess
the characteristic atomic intershell peaks. For Re and
R(C±C) � 2:8 and 3.0 a.u. the potential for the KS-hole
solution is consistently more attractive than that for the
ensemble solution. This correlates with the downward
shift of energies of the r-orbitals of the former solution
as compared with those of the latter solutions. Taken
together with the abovementioned relatively large den-
sity error Dq and high kinetic energy Ts these results
con®rm the inferior quality of a one-determinantal KS-
like solution with a hole and con®rm that the ensemble is
the proper KS solution in this case.

The behavior of mxc with changing R(C±C) in the p-
bonding region is shown in Fig. 4. It represents contour
plots of the ensemble mxc at Re and R(C±C) � 2:8 and 4.0
a.u. in the plane containing the bond axis (axis z of the
plot), with the bond midpoint being at the position (0,0).
The variation of the shape of mxc correlates with the
gradual decrease of the p-bonding with increasing
R(C±C). Indeed, at Re and away from the z axis (at
x � 0:5 ± 0:8 a.u.) the potential has lower values (con-
tours of ÿ0:9 and ÿ0:85 Hartrees) closer to the bond
midplane, thus favoring an accumulation of the electron
density in the region of ``banana'' bonds (Fig. 4a). At
larger distances the contour of ÿ0:85 Hartrees reduces
to a small closed curve and moves in the nonbonding
region on the outer side of the C nucleus.

6 Summary and conclusions

In this paper the type of Kohn-Sham solution and the
form of the KS orbitals has been studied for cases (the
CH2 and C2 molecules) where the nondegenerate pure-
state wave function of the corresponding interacting
system has essentially multideterminantal character. We
®nd the CH2 ground state at equilibrium geometry to be
PS-Vs representable, but C2 at Re and longer bond

Table 6. Kohn-Sham and Har-
tree-Fock energy characteristics
(a.u.) for C2

R(C±C), a.u. 1.8 2.348 2.8 3.0 3.2 4.0

Pure state (at 1.8 a.u.) and ensemble (other R) Kohn-Sham solutions

Ts 77.287 75.517 75.068 75.088 75.101 75.029
Ex )10.381 )10.047 )9.913 )9.922 )9.946 )9.809
EKS )95.148 )90.720 )88.206 )87.347 )86.611 )84.233

KS solutions with a hole below the Fermi level
Ts ± 75.518 75.083 75.210 75.105 75.030
Ex ± )10.032 )9.861 )9.788 )9.945 )9.808
EKS ± )90.713 )88.167 )87.153 )86.614 )84.233

Hartree-Fock
THF 77.191 75.392 74.854 74.756 74.885 74.688
EHF
x )10.389 )10.041 )9.876 )9.827 )9.760 )9.810

EHF )95.179 )90.738 )88.210 )87.316 )86.686 )84.300
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distances to be E-Vs representable, (or class b, as
described in Sect. 1).

Applying the results of Levy [1] and Lieb [2] to
noninteracting systems, we know that there are many
densities that are not PS-Vs representable but that are
E-Vs representable. It is thus certainly possible that a
given interacting ground state density does not belong to
the set of PS noninteracting ground state densities, but
does belong to the set of ensemble-representable non-
interacting densities. Our results prove this not to be
only an academic possibility, but E-Vs representability is
in fact called for to handle cases with strong electron
correlation, i.e., essentially multideterminantal character
of the interacting ground-state wavefunction.

The KS solution for the lowest singlet states of CH2

and C2 has been constructed from the ab initio CI q. To
obtain the ensemble solution in the cases when an at-

tempt to construct the PS leads to a non-Aufbau solu-
tion, the procedure of ``evaporation of the hole below
the Fermi level'' has been employed [15, 17, 37]. Already
for CH2, for which the wave function has a relatively
weak multideterminantal character, calculation in the
TZ basis yields the ensemble solution and only with the
extended QZ basis the pure-state one-determinantal KS
solution has been obtained.

With the example of C2, the possibility has been
demonstrated of an essentially accurate ensemble KS
solution with accidental degeneracy (E-Vs represent-
ability) for a q that is PS-V representable for the inter-
acting system. A variety of KS solutions has been
obtained depending on the R(C±C) distance, ranging
from a single-determinantal pure-state at R(C±C) � 1:8
a.u. through an ensemble with a weak accidental de-
generacy at Re to an ensemble with a strong degeneracy

Fig. 3a±d The exchange-corre-
lation potential mxc along the
bond axis of C2. mExc (solid lines)
is the potential corresponding
to the ensemble solution;
mPSÿholexc (dotted lines) corre-
sponds to the single-determi-
nant solutions with a hole
below the Fermi level. a Re, b
2.8 a.u., c 3.0 a.u., d 4.0 a.u.
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at R(C±C) � 3:0 a.u. and then to another ensemble with
a weak accidental degeneracy at R(C±C) � 4:0 a.u. KS-
like solutions with a hole below the Fermi level have
also been constructed as alternatives to the ensemble
solution. When the multideterminantal character of the
wave function W of the interacting system is weak, the
density errors Dq and energies such as Ts and EKS of
both solutions are in fact rather close to each other.
However, when W has a strong multideterminantal
character, the quality of the solution with a hole is in-
ferior to that of the ensemble since Dq is considerably
higher for the former solution. This is probably related
to the unusual form that mxc has to take in this case in
order to ``distort'' the fully occupied KS orbitals su�-
ciently so that they can build the density. The potential
obtained for the ensemble solution looks ``normal'', i.e.,
its form with characteristic atomic intershell peaks is
reminiscent of that obtained previously for mono-
hydrides XH (X = Li, B, F) [24, 46] and for dimers X2

(X = Li, N, F) [44]. The relatively large Dq and the
strange shape of mxc are, of course, not proof that the

hole solutions are not correct, since we cannot exclude
the possibility that the numerical procedure of con-
structing mxc may be re®ned so as to achieve a better Dq
by an even more elaborate mxc. The solutions with a hole
below the Fermi level are, however, not acceptable since
they are not true ground states of the noninteracting
system with the obtained potential ms. Taken together,
these results con®rm that the ensemble is the proper KS
solution in this case.

The KS orbitals can be compared to the NOs. When
the density is still PS-Vs representable, but con®gura-
tion mixing is already becoming signi®cant in the CI
wave function, the occupied KS orbitals may start to
di�er from the NOs, since they have to incorporate the
e�ect of the con®guration mixing on the density. As an
example we have discussed the stretched H2 molecule.
The expansion of the KS rg orbital in terms of the
canonical Hartree-Fock orbitals has a speci®c form,
since unoccupied HF orbitals of rg symmetry have to
be included in order to represent the correlation e�ect
on the density of electronic excitation to the ru orbital
(of a di�erent symmetry) in the CI expansion. Because
of this speci®c expansion, the construction of accurate
KS orbitals in a ®nite basis requires a su�ciently large
basis set. The expansion indicated here causes the KS
orbitals for a pure state to be distinctly di�erent from
the natural orbitals representing the same q. When
being expanded in terms of the HF orbitals ui, the KS
orbitals and NOs provide di�erent representations of
the same q in terms of the products uiuj. This has been
observed in C2 at 1.8 bohr, where the density can be
represented by a noninteracting pure state, and in
particular for the KS-like solutions that consists of a
pure state (single determinant) with a hole below the
Fermi level. The KS orbitals of the ensemble solutions
are closer to the NOs.

The ensemble solutions obtained for C2 provide a
representation of q with fractional occupations of KS
orbitals. Thus, our results support the use of fractional
occupation of KS orbitals within the computational
DFT schemes based on the LDA and GGA in the cases
where the standard procedure creates holes below the
Fermi level in the KS spectrum [15,17]. Still, care should
be exercised in this case, since the form of the KS
solution might be sensitive to the size of the basis and
to speci®c DFT approximation used.

The elongation of the C±C bond can be considered as
a simple example of a dissociation reaction. The complex
electron rearrangement with a r-bond forming and a p-
bond breaking is described in the KS theory by the ap-
pearance and transformation of the ensemble solution
with an accidental degeneracy presented above. One can
expect that such ensembles play an important role in the
KS description of chemical reactions and, especially, of
their transition state [17]. This will be substantiated in
our further work.
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